Logic Meets Algebra: the Case of Regular Languages
نویسندگان
چکیده
The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Büchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and blockproducts of pseudovarieties of monoid. We also explain the impact of these connections to circuit complexity theory.
منابع مشابه
Alternating Regular Tree Grammars in the Framework of Lattice-Valued Logic
In this paper, two different ways of introducing alternation for lattice-valued (referred to as {L}valued) regular tree grammars and {L}valued top-down tree automata are compared. One is the way which defines the alternating regular tree grammar, i.e., alternation is governed by the non-terminals of the grammar and the other is the way which combines state with alternation. The first way is ta...
متن کاملMost Complex Deterministic Union-Free Regular Languages
A regular language L is union-free if it can be represented by a regular expression without the union operation. A union-free language is deterministic if it can be accepted by a deterministic one-cycle-freepath finite automaton; this is an automaton which has one final state and exactly one cycle-free path from any state to the final state. Jirásková and Masopust proved that the state complexi...
متن کاملStone duality, topological algebra, and recognition
Our main result is that any topological algebra based on a Boolean space is the extended Stone dual space of a certain associated Boolean algebra with additional operations. A particular case of this result is that the profinite completion of any abstract algebra is the extended Stone dual space of the Boolean algebra of recognisable subsets of the abstract algebra endowed with certain residuat...
متن کاملInexpressibility Results for Regular Languages in Nonregular Settings
My ostensible purpose in this talk is to describe some new results (found in collaboration with Amitabha Roy) on expressibility of regular languages in certain generalizations of first-order logic. [10]. This provides me with a good excuse for describing some the work on the algebraic theory of regular languages in what one might call “nonregular settings”. The syntactic monoid and syntactic mo...
متن کاملZero-One Law for Regular Languages and Semigroups with Zero
A regular language has the zero-one law if its asymptotic density converges to either zero or one. We prove that the class of all zero-one languages is closed under Boolean operations and quotients. Moreover, we prove that a regular language has the zero-one law if and only if its syntactic monoid has a zero element. Our proof gives both algebraic and automata characterisation of the zero-one l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 3 شماره
صفحات -
تاریخ انتشار 2007